

OSAKA FUJI Corporation

Process Business: Business Guide

Head Office

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6487-1865 Fax: +81-6-6488-1623

Manufacturing Division

Omigawa Factory

1564-1 Kamikobori, Katori-shi, Chiba 289-0306 Japan Telephone: +81-478-82-5611 Fax: +81-478-82-5821 Amagasaki Factory

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6487-1891 Fax: +81-6-6488-7103

Wakayama Factory 2017-21 Saikazaki, Wakayama-shi, Wakayama 641-0062 Japan Telephone: +81-73-446-0002 Fax: +81-73-446-0022

Senboku Factory 3-69 Takasago, Takaishi-shi, Osaka 592-0001 Japan Telephone: +81-72-268-1666 Fax: +81-72-268-1665

Technology Center

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6487-1874 Fax: +81-6-6487-2096

Laser Plasma Joining Institute (LPJ)

3-24-33 Kukuchi, Amagasaki-shi, Hyogo 661-0977 Japan Telephone: +81-6-6498-0130 Fax: +81-6-6498-0149

VIETNAM OSAKA FUJI CO., LTD. (VINA OFIC)

Road No.4, Nhon Trach 3 Industrial Park(Phase2), Nhon Trach District, Dong Nai Province, Vietnam. TEL:+84-61-3566-700 FAX:+84-61-3566-701

Sales and Marketing Division

East Japan Sales Department

Kashima Office / Katori Office 1564-1 Kamikobori, Katori-shi, Chiba 289-0306 Japan Telephone: +81-478-82-5611 Fax: +81-478-82-5821 East Japan Office 1564-1 Kamikobori, Katori-shi, Chiba 289-0306 Japan Telephone: +81-478-82-5611 Fax: +81-478-82-5821

West Japan Sales Department

Nagoya Office

1F Rise Building, 2-58 Sakae-machi, Tokoname-shi, Aichi 479-0836 Japan Telephone: +81-80-8933-6549 Fax: +81-569-35-9162 West Japan Office

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6487-1891 Fax: +81-6-6488-7103

Wakayama Office

2017-21 Saikazaki, Wakayama-shi, Wakayama 641-0062 Japan Telephone: +81-73-446-0002 Fax: +81-73-446-0022

Osaka Office 3-69 Takasago, Takaishi-shi, Osaka 592-0001 Japan Telephone: +81-72-268-1666 Fax: +81-72-268-1665

Mizushima Office

1-1 Mizushima Kawasaki-dori, Kurashiki-shi, Okayama 712-8074 Japan Telephone: +81-86-448-3338 Fax: +81-86-448-6802

Kyushu Office

2-7-4 Momozono, Yahata Higashi-ku, Kitakyushu-shi, Fukuoka 805-0068 Japan Telephone: +81-80-8933-6532 Fax: +81-93-661-0554

Engineering Sales Department

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6487-1866 Fax: +81-6-6488-1570

International Sales Department

1-9-1 Jokoji, Amagasaki-shi, Hyogo 660-0811 Japan Telephone: +81-6-6439-9094 Fax: +81-6-6488-1570

OSAKA FUJI Corporation

https://www.ofic.co.jp/en/

VIETNAM OSAKA FUJI CO., LTD (VINA OFIC)

http://vinaofic.vn/

Creating the ideal surface

OSAKA FUJI has continued to contribute broadly to a wide variety of industries mainly through advanced and innovative technologies that address the surface modification needs of society

Recognizing the importance of fully addressing customers' needs, OSAKA FUJI is guided by a corporate philosophy that places the utmost emphasis on creating unique technologies that society needs. In carrying out its corporate philosophy, the Company draws on its quality strengths to ensure complete reliability, its technological strengths to build a better tomorrow, and its development strengths to engender passion.

Surface **Modification**

Ensuring sufficient surface functionality on base components

Quality Strengths Development Strengths Technological Strengths

Soverlay Welding

Helping to increase performance and reduce costs through proprietary technology proposals OSAKA FUJI puts forward overlay welding method technologies and develops proprietary material proposals that best fit each client's specifications and requirements to extend the life of equipment while reducing costs.

Laser cladding

The low heat flux and high irradiation intensity used in laser cladding not only ensures the minimized heat-affected zone but also achieves the crack-free coating of material combinations that are

difficult/impossible to weld by conventional electric-welding methods

Creating new surfaces using a variety of materials OSAKA FUJI puts forward highly function sprayed coating proposals that best fit each client's specifications and requirements to extend the life of equipment and overcome

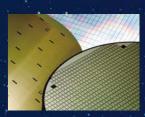
Extensive equipment lines are capable of machining workpieces that weigh up to 30 tons

OSAKA FUJI has set up a series of machining equipment that are capable machining workpieces that weigh up to 30 tons. Utilizing an integrated work system that encompasses welding, thermal spraying, and machining, we also mai strict control over quality and deliverie

Realizing both hardness and toughness through the use of proprietary quenching technologies OSAKA FUJI is able to manufacture every possible type of roll including cold rolling. hot rolling, foil, and grooved steel rolls using unique induction quenching technologies that realize both hardness and toughness.

About OSAKA FUJI Corporation

Based on the know-how and experience gained mainly in the manufacture and repair of ironmaking equipment since its foundation in 1955, OSAKA FUJI has continued to improve on its machining as well as proprietary overlay welding, thermal spraying, and other surface modification technologies. Moving well beyond the iron and steel industry, we are currently rolling out a wide range of surface function modification technologies across the paper, energy semiconductor and IT, aerospace, construction, and various other fields


In the iron and steel industry

In the paper industry

In the enerav industr

In the semiconductor and IT industry

In the aerospace industry

In the construction industry

2

Addressing Customers' Nationwide Needs through a Network of Four Factories and 12 Offices that Cover All Regions across Japan

OSAKA FUJI maintains a network of four factories, 12 offices, and a technology center located in various regions across Japan. A new overseas factory commenced operations in south Vietnam in 2015. Through these means, we have set up a structure that is capable of responding to the nationwide requirements of customers in a prompt and timely manner.

Amagasaki Factory

Site area: 9.203 m²
Floor space: 5,619 m²
Overhead traveling cranes: 10 cranes / 5-30 tons
Hoists: 8 hoists / 0.5-2.8 tons

Located in Amagasaki City, Hyogo Prefecture, the Amagasaki Factory is equipped with an integrated work system that engages in a wide range of overlay welding, machining, and heat treatment work. Moreover,

an engineering department is always on standby in this factory to meet various needs from design to manufacture and installation.

Q 루

Site area: 9,850 m²
 Floor space: 1,650 m²
 Overhead traveling cranes: 4 cranes / 2.8-10 tons

Wakayama Factory

Located in Wakayama City, the Wakayama Factory is engaged in integrated work including the overlay welding of continuous casting rolls, machining, and heat treatment.

Hyogo Prefectu

Laser Plasma Jo

 [No. 1 Plant]
 • Site area: 5,573 m²
 • Floor space: 2,747 m²

 • Overhead traveling cranes: 4 cranes / 5-20 tons

 [No. 2 Plant]
 • Site area: 2,013 m²
 • Floor space: 1,239 m²

 • Overhead traveling cranes: 4 cranes / 2.8-5 tons

Located in Takaishi City, Osaka, the Senboku Factory is a leading facility in Japan that specializes in thermal spraying. Maintaining a wide range of thermal spraying equipment, the Factory provides optimal thermal

spraying methods to the iron and steel, paper, power plant, semiconductor, and other industries. The Senboku Factory employs cutting-edge thermal spraying equipment and is actively engaged in the development of new technologies.

Laser Plasma Joining Institute (LPJ)

Site area: 3,742.4 m²
Floor space: 2,806 m²
Overhead traveling cranes: 3 cranes / 2.0-2.8 tons

Located in Amagasaki City, Hyogo Prefecture, the

Laser Plasma Joining Institute specializes in laser cladding and powdered plasma arc welding. The Institute engages in a wide range of activities from highly functional surface modification technological development to manufacturing.

• Site area: 21,731 m²

• Floor space: 5,725 m²

- Overhead traveling cranes: 7 cranes / 10-40 tons
- Bridge crane: 1 crane / 10 tons

Located in Katori City, Chiba Prefecture, the Omigawa Factory is a large-scale facility that engages in a wide range of work including overlay welding, machining and processing, structural welding, thermal spraying, and the manufacture of small forged

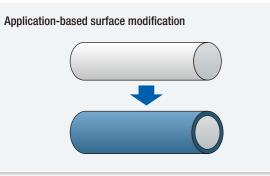
steel rolls. Fulfilling the role of a service base in eastern Japan, the Factory addresses the needs of every possible genre.

Technology Center

Located in Amagasaki City, Hyogo Prefecture, the Technology Center draws on the Company's experience and technologies nurtured over many years, to actively create new surface function modification technologies.

The Company also strives vigorously to develop world-class advanced technologies through joint research in conjunction with other industries and academia. In this manner, we endeavor to contribute to the well-being of society.

VIETNAM OSAKA FUJI CO., LTD. (VINA OFIC)


Located in Dong Nai province, Vietnam, VIETNAM OSAKA FUJI CO., LTD. was established as the Company's first overseas factory and commenced operations in overlay welding, thermal spraying as well as machining and processing in 2015.

Proposals that help extend the lives of equipment and reduce costs

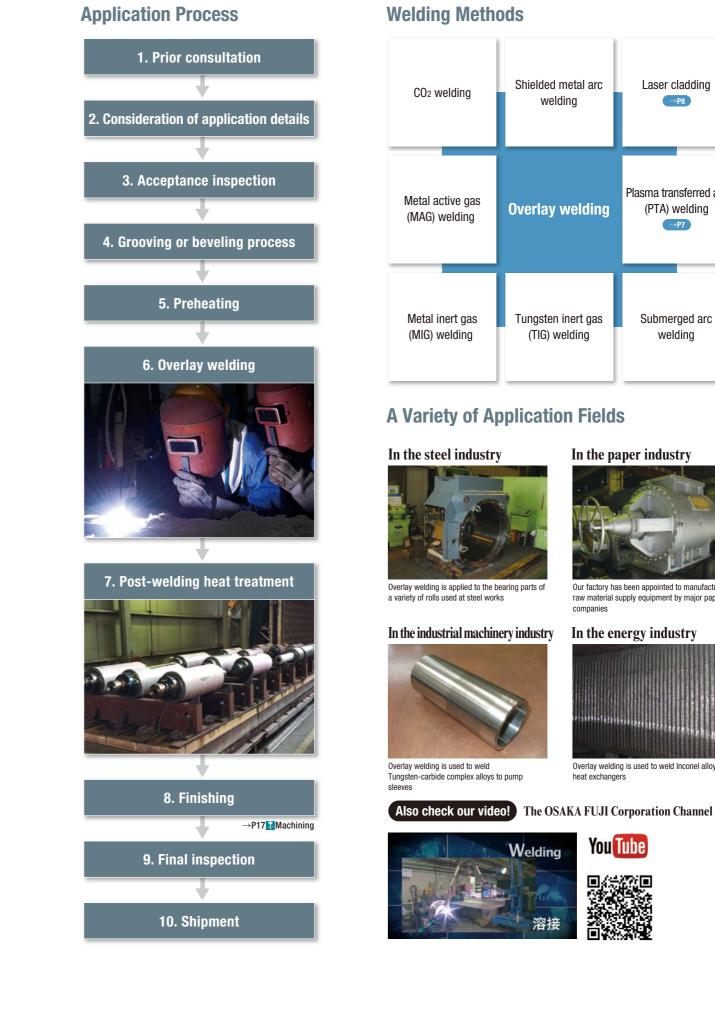

OSAKA FUJI puts forward surface modification proposals that encompass welding, welding parts, and proprietary materials that best fit clients' specifications and requirements to extend the lives of equipment while reducing costs. We are working diligently to provide products at a lower cost and in a short period of time through our in-house integrated production capabilities.

Diagram of Surface Modification and the Restoration of Deformed Component Shapes

CO2 welding	Shielded metal arc welding	Laser cladding	
tal active gas IAG) welding	Overlay welding	Plasma transferred arc (PTA) welding →P7	
etal inert gas 11G) welding	Tungsten inert gas (TIG) welding	Submerged arc welding	

A Variety of Application Fields

In the paper industry

Our factory has been appointed to manufacture raw material supply equipment by major paper companies

In the energy industry

Overlay welding is used to weld Inconel alloys to heat exchangers

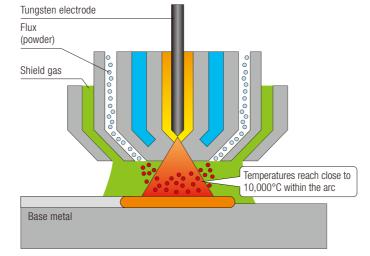
You Tube

High-quality surface treatment using plasma transferred arc and laser methods

By employing powders as welding materials, both the plasma transferred arc and laser welding methods enable overlaying to materials and components that

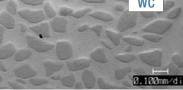
have conventionally been difficult to weld. In addition, positive steps are being taken to develop surface treatment technologies that match customers' needs.

Plasma Transferred Arc (PTA) Welding


Plasma arc welding is an arc welding process wherein coalescence is produced by the heat obtained from a constricted arc setup between a tungsten electrode and the job. The fused welding materials (powders) form a high-performance coating film.

Features

- Due to the low level of weld metal deposits on the base material, the PTA method delivers the desired level of chemical composition from the initial clad layer.
- Mixing ratios of feedstock materials (metallic materials and carbide composites) can be adjusted according to requirements.
- To have suitable shielding protection and avoid atmospheric contamination, inert gas is sent through the outer shielding ring of the torch.
- High bonding strength of the metallurgically fused bond between the base material and clad layer.


Case Study

Overlay welding coat of the hard metal alloys (Tungsten carbide complex) on sliding bearing parts used in high-load environments is effective for life extension. Overcoming the issues of spalling or peeling, the excellent sliding properties can be achieved even in high load, high thermal shock, and high corrosive environments through the PTA process.

WC complex alloy microstructure

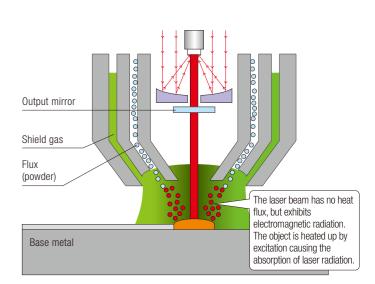
Interior overlay

Exterior overlay

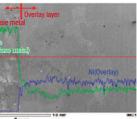
Laser Cladding

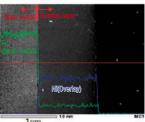
Welding material powder is melted and consolidated by laser irradiation/excitation to form a highly functional coating. Compared with the plasma transferred arc method, the heat affected zone is reduced because of its limited heat spot and lower heat flux.

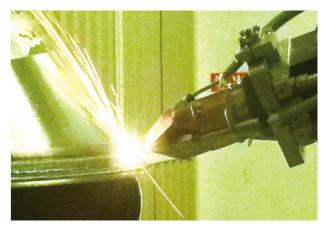
Features


- Base material welding penetration is small due to the low heat flux and high irradiance intensity. As a result, material concentration dilution is less than the PTA method, which in turn helps to produce a thin, high-quality coating.
- Mixing ratios of feedstock materials (metallic materials and carbide composites) can be adjusted as well as the PTA method.
- Low degradation, embrittlement and cracking, in the heat affected zone due to low heat flux.
- Applicable to small objects, cutting edge and thin sheets, because of low heat flux and highly accurate deposition.

Case Study

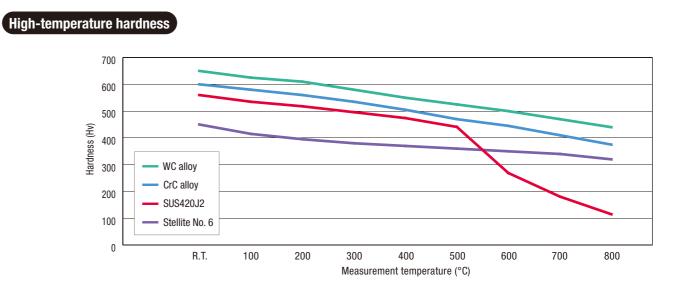

Overlay welding with laser cladding is now applicable to thin/small objects, high thermal conductivity materials (copper), and such high thermosensitive materials as cast iron, tool steel, and double-phase stainless steel, all of which are not possible in using conventional electric welding methods due to difficulties associated with welding heat.


Thin pipe cladding

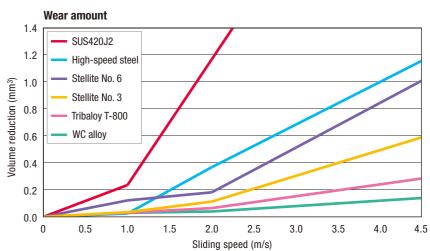

Cladding layer base metal dilution (scanning electron microscopy beam analysis)

Arc welding

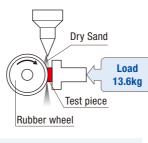
Laser cladding


Tapered section cladding

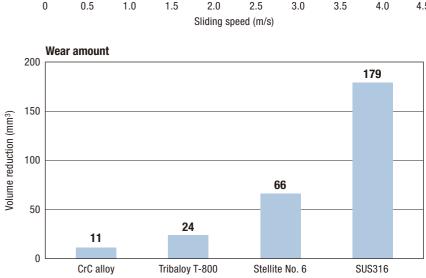
Material and Coating Characteristics Data

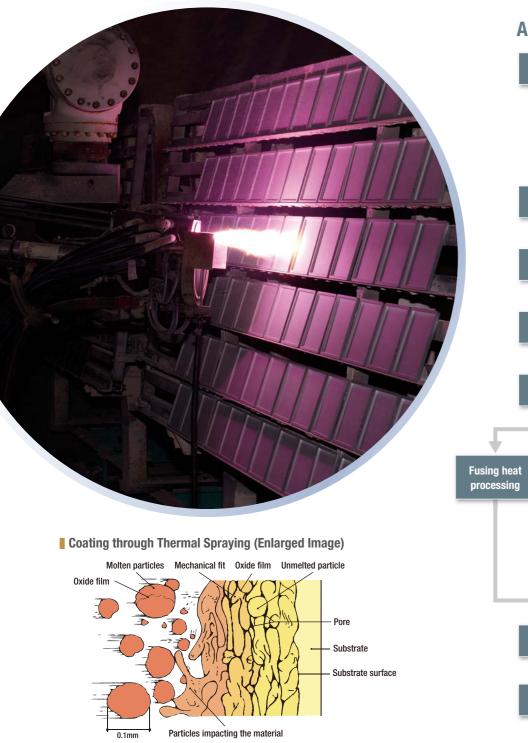

					©Optimal OSuitable				
Classification		Material name Typical composi wt.%		Wear resistance	Galling resistance	Heat resistance	Corrosion resistance	Applicable conditions • Features	Hardness Hv
		0F-250	Fe-Cr-Mo-C	0					250
		0F-300	Fe-Cr-Mo-C	0					300
		0F-400	Fe-Cr-Mo-V-C	0				Fe bordened everley	400
		0F-500	Fe-Cr-Mo-V-C	0				Fe hardened overlay	500
		0F-600	Fe-Cr-Mo-V-C	0					600
		0F-700	Fe-Cr-Mo-V-C	0					700
	Fo boos allow	OF-DS61	Fe-Cr-Mo-V-C	0				Impact and wear resistant	600
	Fe-base alloy	High-speed steel	Fe-Cr-Mo-V-W-C	O				High hardness and wear resistant	800
		High-chromium cast iron	Fe-30Cr-3C	O				Erosion, sediment, and wear resistant	700
		High Mn steel	Fe-Mn					Import and ware resistant	450
		13 Cr-Ni alloy steel	Fe-Cr-1~4Ni	0				Impact and wear resistant	350
		SUS420J2	Fe-Cr-C	0		0		Heat and wear resistant	600
		SUS308	Fe-Ni-Cr			0	0	Corrosion and heat resistant	180
Meta		SUS310	Fe-Ni-Cr			O	0		180
Metals • alloys		Pure copper	99.8Cu					Conductive coating	
lloys	Cu-base alloy	Various copper alloys	Cu-Sn, Cu-Ni, Cu-Zn		0			For olido component uso	
		Aluminium bronze (aluminum bronze)	90Cu-9Al-1Fe		0			For slide component use	180
		Inconel alloy	Ni-Cr			O	\bigcirc		200
		Hastelloy alloy	Ni-Cr-Mo			O	O	Corrosion and heat resistant	200
	Ni-base alloy	Monel alloy	Ni-Cu				\bigcirc		180
		Colmonoy No. 5	Ni-Cr-Si-B-Mo-C	0	0	0	0	Heat and wear resistant	500
		Colmonoy No. 6	Ni-Cr-Si-B-Mo-C	0	0	0	0		600
		Stellite No. 1	Co-28Cr-4W-3C	0	0	\bigcirc	0		600
		Stellite No. 12	Co-28Cr-8W-1.2C	0	0	O	0	Heat, abrasion, and corrosion resistant	500
		Stellite No. 6	Co-28Cr-4W-1C	0	0	O	0		450
	Co-base alloy	Stellite No. 21	Co-28Cr-5Mo-0.3C	0	0	\bigcirc	0		350
		Tribaloy T-400	Co-8Mo-28Cr-3Si	0	0	O	0		450
		Tribaloy T-700	Ni-28Mo-17Cr-3Si	0	0	O	0	Heat, abrasion, and corrosion resistant	550
		Tribaloy T-800	Co-28Mo-17Cr-3Si	0	0	\odot	0		600
		WC+Ni	30~50vol%WC	O	O	0	0		550
		WC+Co	30~50vol%WC	O	\bigcirc	0	0		700
Cer	Carbida alla	NbC+Ni	30~50vol%NbC	O	\odot	0	0	Illtro bish woor resistant alley	500
Cermet	Carbide alloy	NbC+Co	30~50vol%NbC	O	\bigcirc	0	0	Ultra-high wear resistant alloy	600
		CrC alloy	30~50vol%CrC	O	\odot	0	0		700
		VC alloy	30~50vol%VC	O	\bigcirc	0	0		800

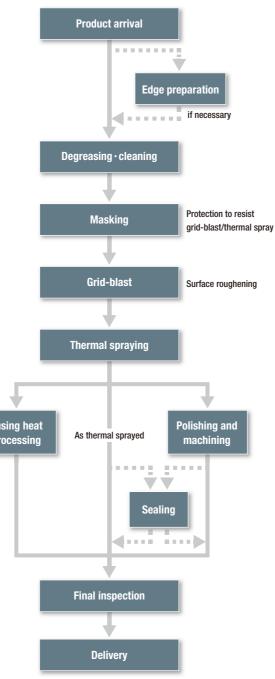
Measurement Results



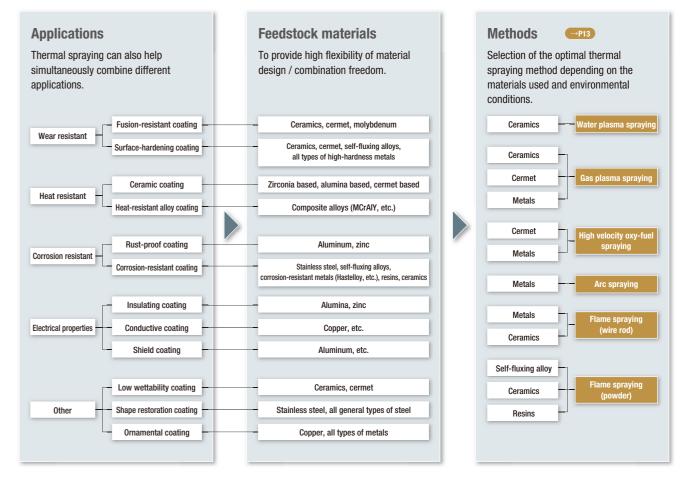
Wear test


Test 1 :Wear test between metals Test piece: Overlay layer Load 12.75kg SUJ2 Test conditions 1.0ther material : SUJ2(Hv750) 2.Loan : 12.75 kg 3.Distance : 200 m 4.Lubricant : None


Test conditions1.Load: 13.6 kg2.Rotating speed: 120 rpm3.Grinding powder: Silica sand 64.Droppage: 300 g/min



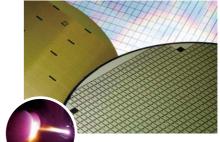
Creating optimal surfaces as requested


Thermal spraying techniques are coating processes that entail the spraying of melted materials onto various object surfaces. Thermal spraying can provide thick coatings over large areas of various shapes and materials. Optimum surface-functions to meet clients' requirements can be given under selected optimum conditions from among a variety of thermal spraying methods and feedstock materials.

Application Process

Thermal Spraying Materials and Methods

A Variety of Applications


In the aerospace industry

In the semiconductor and IT industry

In a variety of industries

of semiconductor components

(Factories or on-site)

Gas plasma spraying used in the production

In the iron and steel as well as energy industries

Also check our video!

The OSAKA FUJI Corporation Channel

Putting Forward Optimal Thermal Spraying Proposals

Drawing on its abundant track record and technological know-how nurtured over many years, OSAKA FUJI puts forward optimal thermal spraying proposals that encompass the selection of materials, methods as well as substrates to be sprayed together with applications and the necessary functions for every possible condition.

Water plasma spraying

Characteristics

- Maximum spraying capacity of 20 kg an hour
- Enables the formation of a film of up to 20 mm
- Enables the control of substrate temperatures at 200°C
- or below during the spraying process
- Enables the thick overlay spraying of large areas of large-format substrates due to fast overlaying speed

OSAKA FUJI's capabilities

- OUndertakes the manufacture of large-scale solid ceramic products Maximum size: ϕ 278×4,400L×t14
- (Please contact the Company regarding large-scale products) OCapable of producing thicknesses of 20-50 mm depending on the type and size of materials

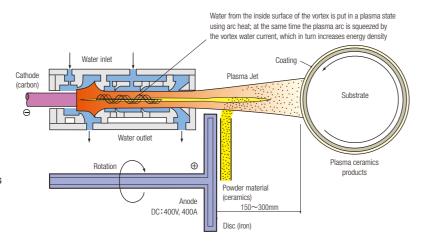
Gas plasma spraying

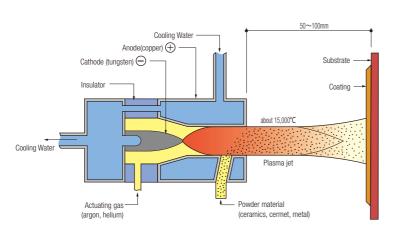
Characteristics

- Enables the spraying all materials including ceramics
- The delicate coatings produced enhance heat and corrosion resistance
- Extremely low oxidation and material deterioration during the spraying process

OSAKA FUJI capabilities

OAble to accommodate on-site spraying OEnables the spraying of large construction structures


High velocity oxy-fuel spraying


Characteristics

- Perfect for spraying of refractory metal (WC-Co) and other materials
- Delicate coating enhances abrasion and corrosion resistance
- Enables the control of substrate temperatures at 200°C or below during the spraying process

OSAKA FUJI strengths

- Able to accommodate on-site spraying
- OEnables the spraying of large construction structures
- Oldeal for the mirror finish coating of substrates

Diamond Spraying

Arc spraying

Characteristics (compared with gas thermal spraying)

- Enables high-speed coating
- High adhesive and coating strength
- Delivers composite materials and quasi-alloy
- coating

Consumable wire electrode (cathode)

 \oplus

Compre

OSAKA FUJI strengths

OEnables thick overlay welding of up to 20 mm OAble to accommodate on-site spraying

> \ominus Consumable wire electrode (anode)

Flame spraying (powder)

Characteristics

- Enables thermal spraying of a variety of materials
- High deposition efficiency for powder materials
- Enables the thermal spraying of highly adhesive self-fluxing alloys

OSAKA FUJI strengths

- OEnables the spraying of cast iron OAble to accommodate on-site spraying
- OEnables the spraying of large components and

carrier ga Oxygen -fuel gas

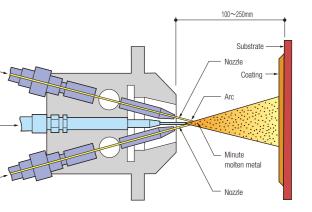
Flame spraying (wire rod)

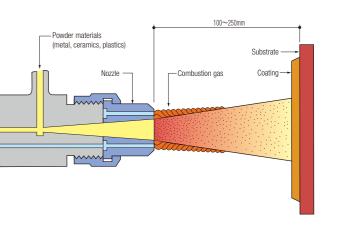
Characteristics

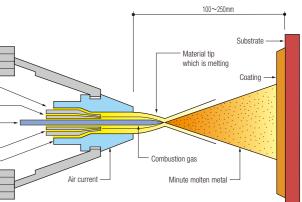
parts

- Mainly used for rust-prevention thermal spraying
- Minimal substrate deterioration and deformation due to low-heat input
- Enables the use of rod- and tube-shaped materials

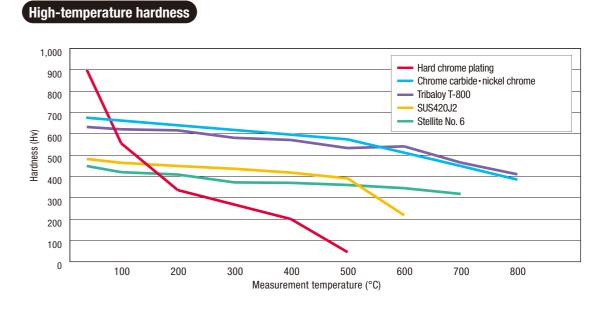
OSAKA FUJI strengths

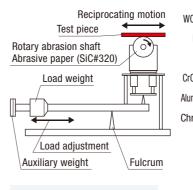

OUndertakes on-site spraying of aluminum and zinc




Compressed air

Oxy-acetylene gas



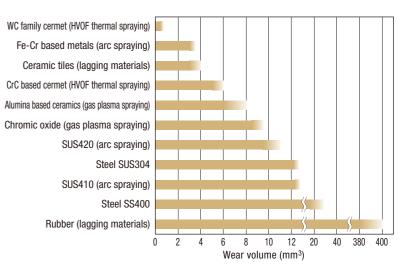

Material and Coating Characteristics Data

Classification							©0ptimal ⊖Suitable	
		Material name	Typical composition wt.%	Abrasion resistance	Heat resistance	Corrosion resistance	Characteristics and properties	Hardness Hv
		Zinc	99.9-Zn			0	Rustproof PH6 – 12	HRh46
	Metals with a low melting point	Aluminum	99.7-Al			0	Rustproof PH4 – 8	HRh80
	a low menning point	Zinc-aluminum alloy	Zn-15Al			0	Rustproof	HRh80 or less
	Carbon steel	Low-carbon steel (mild steel)	Low C	0			IH coating, thick maintenance coating	150
	Carbon steel	High-carbon steel (piano wire)	0.8C	O			Hardened thick maintenance coating	360
		SUS410	13Cr-0.1C	O			Standard overlay repair material	250
	Chaimlean sheal	SUS420J2	13Cr-0.4C	O			Harder than SUS410	350
	Stainless steel	SUS316	18Cr-12Ni-2.5Mo-0.06C			0	Non-magnetic, highly corrosion resistant	240
		Fe-Cr family of amorphous alloy	Fe-28Cr-3.7B-2Mn-1.7Si-他	O		0	Abrasion resistant to dust	900
		Pure copper	99.8Cu				Conductive line covering	70
Meta	Copper alloy	Brass	63Cu-36Zn				Highly modifiable	
Metals • alloys		Aluminum bronze	90Cu-9Al-1Fe	0			Highly resistant to seizure	150
alloy		Nickel aluminum	Ni-5Al		0		Undercoating material	120
S		Nickel chrome 80-20, 50-50	80Ni-20Cr		0	0	High-temperature oxidation resistant, high-temperature corrosion resistant	200~300
	Heat-resistant alloy	Hastelloy C-276	Ni-15Cr-16Mo-4W-5.5Fe		0	\bigcirc	Acid resistant (all types of acids)	350
	Corrosion-resistant	Inconel-625	Ni-21.5Cr-9Mo-2.5Fe-3.7(Nb+Ta)		0	0	Chloride corrosion resistant	340
	alloy	Monel	67Ni-30Cu-2Fe		-	0	Salt water corrosion resistant	140
		Stellite #6	Co-28Cr-4W-1C-3Fe	0	0	0	Heat resistant, abrasion resistant	400
		Tribaloy T-800	Co-28Mo-17Cr-3Si	0	0		High-temperature lubricity	700~800
	Metals with	Molybdenum	99.5Mo	0			Highly seizure resistant	400
	a high melting point	Tungsten	99.5W				Molten Cu, Zn resistant	400
		CoNiCrAlY	Co32Ni21Cr8Al0.5Y		0		High-temperature oxidation corrosion resistant	400
	MCrAIY alloy	NiCrAly	Ni22Cr10Al1Y		0		High-temperature oxidation corrosion resistant	400
S		METCO 16C equivalent (4 types)	Ni16Cr4Si4B3Cu3Mo2.5Fe0.75C	0	0	0	High bond strength, can be applied thickly	HRc60
elf-fl	Ni-based	METCO 15E equivalent (5 types)	Ni17Cr4Fe4Si3.5B0.9C	O	0	0	High bond strength	HRc62
uxin		METCO 18C equivalent (1 type)	Co27Ni18Cr6Mo3.5Si3B2.5Fe0.2C	0	0	0	High tensile strength due to Ni base	HRc60
Self-fluxing alloys	Co-based	Stellite SF20 equivalent (2 types)	Co13Ni19Cr15W3Si3B4Fe1.3C	0	0	0	Highly molten Zn - resistant	HRc60
oys	Ni-based + WC	METCO 31C equivalent (2 types)	Ni11Cr2.5Fe2.5Si2.5B0.5C+35WC	0			Excellent abrasion-resistance including WC	HRc60~65
		Tungsten carbide 12 cobalt	WC-12Co	0			Corrosion resistant to molten zinc	1,000~1,300
Cermet	Carbide family	Tungsten carbide nickel chrome	WC-27NiCr	0		0	Highly water resistant	1,000~1,200
let	,, ,	Chromium carbide nickel chrome	Cr3C2-25NiCr	0	0	0	High-temperature abrasion resistant	800~1,000
		White alumina WA	99.8AI203	0	0		Electrical insulation properties	900~1,000
		Gray alumina A	AI203-3Ti02	0			E SESSE	900~1,000
	Alumina based	Alumina titania AT	Al203-13Ti02	0				750~1,000
		Alumina zirconia AZ	Al203-25Zr02-2Ti02	Ô				900~1,000
		Mullite WM	AI203-22SI02		0		Low thermal expansion coefficient	900~1,000
Cer		Calcia zirconia Z	Zr02-5.4Ca0		0		Thermal barrier coating	700~800
Ceramics	Zirconia based	Yttria zirconia YZ8	Zr02-8Y203		0		Thermal barrier coating	700~900
w.		Magnesia zirconia MZ	Zr02-25Mg0		0		Thermal barrier coating	
		Zircon ZR	Zr02-33Si02		0		Corrosion resistant to molten metal	600~700
		Titania (oxidized titanium) T	99.2Ti02	0			High-density-structured coating	700~800
	Others	Chromia (oxidized chrome) CR	99.6Cr203	0		0	Self-lubricating properties	1,000~1,300
		Yttria (oxidized yttrium) Y	99.9Y203		O	-	High thermal stability	, . ,
L							<u> </u>	

Measurement Results

Suga abrasion test

Test conditions


1. Counter material: SiC#320 2. No. of test rotations: 2,000

Rust-prevention effects based on salt spraying tests

 $\bigcirc:$ No red rust $\times:$ Red rust present

Test specimen	1,000 hours	2,000 hours	3,000 hours	6,000 hours	Weight change	Evaluation
Al thermal spraying (80,160,200 µm)	0	0	0	0	Small amount	2
Same as above, silicon or epoxy resin-sealing treatment	0	0	0	0	Least amount	1
Zn thermal spraying (80,160,200 µm)	0	0	0	0	Substantial	6
Same as above, silicon or epoxy resin-sealing treatment	0	0	0	0	Slightly substantial-substantial	5
Zn/Al alloy thermal spraying (80,160,200 µm)	0	0	0	0	Slightly substantial	4
Same as above, silicon or epoxy resin-sealing treatment	0	0	0	0	Small amount-slightly substantial	3
Dissolved zinc plating (50µm)	0	×	×	×	Most substantial	7

Test conditions Air saturator temperature: 47°C Test chamber temperature: 35°C Saltwater concentration: 5% saltwater Spray amount: 1.5±0.5ml/80cm 2 /hr

Extensive equipment lines are capable of machining workpieces that weight up to 30 tons

Each of OSAKA FUJI's factories maintains a full range of specially designed small to large mechanical equipment. The Company actively addresses the various and diverse needs of customers.

Small and medium sized equipment

Drawing on its wide selection of lathes, 5-axis control machining center, vertical milling machines, polishing machines and other equipment, OSAKA FUJI is capable of meeting a broad array of customers' needs from volume production to multiple small lot products.

OSAKA FUJI's strengths Drawing on its integrated work system that encompasses welding, thermal spraying, machining, and final inspection, OSAKA FUJI offers flexible delivery while

helping to reduce costs.

NC boring machine

Ge

General-purpose lathe

Large workpiece equipment

Utilizing 30 ton cranes and large-scale equipment, the Company is able to process work of considerable weight and length.

NC boring machine

Able to machine long workpieces up to a maximum length of 21 m utilizing multiple boring machines in tandem
Able to machine workpieces up to a maximum weight of 30 tons

Turning machine (vertical lathe)

Able to accommodate workpieces up to a maximum of 4 m in length utilizing a 3.5 m diameter table
Able to polish tapers with a high degree of precision through adjustments to

 Able to polish tapers with a high degree of precision through adjustments to the angles of columns

Large NC lathe

- $\ensuremath{\cdot}\ensuremath{\mathsf{OSAKA}}$ FUJI maintains multiple large lathes including large NC lathes up to 10 meters in length
- -Able to accommodate a wide range of machining including inside/outside diameter milling, threading and tapers

Five-surface grinding machine

-Able to accommodate work with a machining height and width of up to 900 mm and 2,600 mm, respectively

Realizing both hardness and toughness through our unique technologies

OSAKA FUJI provides thick hardened high-performance rolls using unique induction guenching technologies. Our product lineup extends from cold and hot mill rolls, grooved rolls and other general-purpose hardening (quenching) rolls to special-purpose rolls that offer a hardness of around Hs100 and foil rolls.

A variety of products

Drilled roll

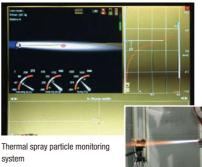
4H work rolls

Roll for steel wire use

Continuous hardening equipment

Tempering furnace

Grinding machine



Laser Plasma Joining Institute (LPJ) **Technology Center**

Drawing on its experience and technologies nurtured over many years, OSAKA FUJI creates innovative technologies

OSAKA FUJI works diligently to uncover and grasp the needs of industry throughout the world while developing innovative technologies and designing products that overcome a host of issues. The Laser Plasma Joining Institute (LPJ) is actively engaged in the development of cutting-edge laser cladding materials and processing technologies. At the same time, the Company also strives to contribute to society by vigorously developing advanced global technologies through the industry-government-academia joint study.

system (Accuraspray-gs manufactured by TECNAR)

Testing equipment

Laser microscope Digital microscope

Vickers hardness tester Micro Vickers hardness teste **Bockwell hardness tester** Surface roughness tester Ferrite scope A variety of electric furnaces (up to 1.280°C) Welding and thermal spraying equipment High-temperature abrasion testing equipment Dye bath abrasion testing equipment Pin-on-disk wear tester Suga abrasion tester

Also check our video!

The OSAKA FUJI Corporation Channel

v Cente

Copper-accelerated acetic acid salt spray tester Special tensile tester

Thermal spray particle monitoring system X-ray fluorescence spectrometer Particle size distribution measuring equipment Automatic sample polishing equipment

19

High-temperature abrasion testing equipment

Energy dispersive x-ray fluorescence spectrometer (Shimadzu Corporation)

Main facilities

Overlay Welding

Model	Manufacturer	No. of units	Capacity
Semi-automatic welder	Panasonic Corporation / DIAHEN Corporation	52	DC Rating: 500A, 350A, 200A
DC TIG welder	DAIHEN Corporation	4	DC Rating: 500A+200A
AC-DC TIG welder	Panasonic Corporation / DIAHEN Corporation	10	AC-DC Rating: 500A, 300A, 200A
AC arc welder	Panasonic Corporation / DIAHEN Corporation DAIDEN Co., Ltd.	30	AC Rating: 500A, 400A, 300A
DC arc welder	DAIHEN Corporation	8	DC Rating: 1500A, 800A
Arc gouging equipment	Panasonic Corporation / DIAHEN Corporation	14	DC Rating: 800A, 600A, 500A
Thyristor controlled gouging equipment	Panasonic Corporation	2	DC Rating: 800A
Air plasma cutting and gouging equipment	DAIHEN Corporation	1	
Band welder	DAIHEN Corporation+OSAKA FUJI Corporation	16	DC Rating: 1500A, 1000A
MAG welder	Panasonic Corporation+OSAKA FUJI Corporation	3	DC Rating: 1000A, 500A
PTA welder		6	DC Rating: 500A
	Kawasaki Heavy Industries, Ltd.	1	Weight capacity: 300 kg
Robot	Kobe Steel, Ltd.	2	ARCMAN™ Positioner, load capacity: 10t
	Panasonic TAWERS	1	Open fastener method: 2 units Load capacity: 1t
Carriage type heat treatment furnace	Yoneda Iron Works Co., Ltd.	1	10t LPG 2m(W)×7m(D)×2m(H)
Carriage type electric furnace	JEMIX Co.,Ltd.	1	300kW(25kW*12)
Batch type electric furnace	TEKUNO MINAMI	1	60kW
Top hat type electric furnace	TEKUNO MINAMI	1	150kW
Positioner (with fastener)	Matsumoto Denki Co., Ltd.	1	PM100
Turning roller	Matsumoto Denki Co., Ltd.	4	20t 10t 5t
Turntable	OSAKA FUJI Corporation	1	Table dimensions: 1.8m×2.5m Load capacity: 20t 7.5kW
400t hydraulic press	Matsumoto Iron Works Co., Ltd	1	Bed dimensions: 1,000×3,000 Stroke: 300 7.5kW

📶 Thermal Spraying

Model	Manufacturer	No. of units	Capacity
	Coaken Techno Co., Ltd.	4	EAS-PS, EAS-500-type, EAS-350-type
Arc spraying equipment	Metallisation Ltd.	3	140
	TAFA	1	8850
	Oerlikon Metco Japan Co., Ltd.	21	12E, 10E, 6P, 5P
Flame spraying equipment	SNM Asia Co., Ltd.	2	TOP-JET, TOP-JET2
Flame spraying equipment	Coaken Techno Co., Ltd.	1	M-Jet5
	Eutectic Japan Ltd.	1	12E
	AMT	2	MP200, MP100
Gas plasma spraying equipment	Oerlikon Metco Japan Co., Ltd.	3	9М, 7МСІІ
	Shimadzu Corporation	8	ТРА
Water plasma spraying equipment	Czechoslovakia	4	AC-160
	Eutectic Japan Ltd.	2	JP5000
High-speed flame spraying equipment	AMT	1	JP5000
	Oerlikon Metco Japan Co., Ltd.	6	DJ2700
Oxy-fuel type spraying gun or interior diameter use	MOGAL Co., Ltd.	1	ME-2
	DAIHEN Corporation	8	
Robot	YASKAWA Electric Corporation	4	
	Panasonic Corporation	1	VR-008A
Rotating table		9	L=2,000~8,000
Turntable		5	φ600~2,000

Research and Development

Model	Manufacturer	No. of units	Capacity
Laser powder overlay welding equipment (LMD welding equipment)	TRUMPF Co., Ltd.	2	Laser output: 5kW+4kW
PTA welder		1	DC Rating: 500A
Robot	KUKA Roboter GmbH / Kawasaki Heavy Industries, Ltd.	2	Weight capacity: 60kg

🛃 Machining

Model	Manufacturer	No. of units	Capacity
NC horizontal boring machine BF-130B	TOSHIBA MACHINE CO., LTD.	2	•Spindle diameter: ϕ 130 •Spindle stroke: 1,000 •Spindle vertical fluctuation: 2,500 •Column movement: 15,100 •Rotating table: 2,000-2,500 •Maximum load capacity: 30t
NC floor-type horizontal boring machine BF-130A	TOSHIBA MACHINE CO., LTD.	1	Spindle diameter: ϕ 130 · Spindle stroke: 1,000 · Spindle vertical fluctuation: 2,500 · Column movement: 6,000 · Rotating table: 2,000×2,500
NC floor-type horizontal boring machine BF-150B	TOSHIBA MACHINE CO., LTD.	1	Spindle diameter: φ150 • Spindle stroke: 1,000 Spindle vertical fluctuation: 2,500 • Column movement: 6,000 Rotating table: 2,000×2,500
NC table-type horizontal boring machine BTD13F-R22	TOSHIBA MACHINE CO., LTD.	1	 Spindle diameter: φ130 · Spindle stroke: 700 Spindle vertical fluctuation: 2,300 · Rotating table: 1,800×2,200
NC horizontal boring machine BTD11ER-13	TOSHIBA MACHINE CO., LTD.	1	B-axis specifications: 1,120x1,250
NC horizontal boring machine BTD-9	TOSHIBA MACHINE CO., LTD.	1	 Spindle diameter: φ90 · Spindle stroke: 1,200 Spindle vertical fluctuation: 1,000 · Column movement: 800 Rotating table: 900×1,050 · Maximum load capacity: 2,500kg
Table-type horizontal boring machine Milling machine	NOMURA MACHINE TOOL WORKS, LTD.	1	Spindle diameter: ϕ 130 · Spindle stroke: 900 ·Spindle vertical fluctuation: 1,300 · Column movement distance: 2,000 ·Rotating table: 1,400×1,600
Vertical lathe TMD-30/45	O-M Ltd.	1	•Table diameter: ϕ 3,000 •Maximum cutting diameter: ϕ 4,500 •Maximum cutting height: 2,100
NC lathe W16L	DAINICHI KINZOKU KOGYO CO., LTD.	4	Inter-center: 5,950~10,000mm •Bed vibration: 950~1,800mm Carriage vibration: 630~1,300mm
NC lathe FNC-5811T	DAINICHI KINZOKU KOGYO CO., LTD. Seibu Koki Co., Ltd. / Okuma Corporation	6	Inter-center: 2,000~4,000mm •Bed vibration: 610~1,450mm •Carriage vibration: 340~1,100mm
NC lathe LC30	Okuma Corporation	4	Inter-center: 350~1,000mm •Bed vibration: 200~700mm •Carriage vibration: -
General-purpose lathe	DAINICHI KINZOKU KOGYO CO., LTD. NISHIMORI INDUSTRY Co., Ltd.	6	Inter-center: 6,000~8,000mm •Bed vibration: 1,200~2,000mm Carriage vibration: 800~1,500mm
General-purpose lathe	DAINICHI KINZOKU KOGYO CO., LTD. / Seibu Koki Co., Ltd. Okuma Corporation / TSUDA Co., Ltd. / YAMAZAKI Co., Ltd.	15	Inter-center: 1,250~4,100mm •Bed vibration: 540~1,250mm Carriage vibration: 360~900mm
General-purpose lathe	YAMAZAKI Co., Ltd. / OKK Corporation	2	Inter-center: 800~850mm •Bed vibration: 370~460mm •Carriage vibration: 180~260mm
5-axis machining center MILLAC800VH	Okuma Corporation	1	800(W)×800(D)
Vertical machining center MB-66VB	Okuma Corporation	1	1,500(W)×660(D)
Vertical machining center MCV520	OKK Corporation	2	1,300(W)×550(D)
Vertical machining center MCV410	OKK Corporation	2	1,000(W)×450(D)
Portal machining center Five-surface grinding machine MPC-8	TOSHIBA MACHINE CO., LTD.	1	Table: 2,200×4,000 • Cutting height: 900 Maximum cutting width: 2,600 • Maximum movement distance: 5,000
3MLV-type universal milling machine	Hitachi Seiko, Ltd.	1	1,600(W)×355(D)
Cylindrical grinding machine GUV	Okuma Corporation	1	Inter-center: 1,100mm · Bed vibration: 400mm
Internal grinding machine YIG-20M	YAMADA KOGYO CO.,LTD.	1	Inter-center: 520mm ·Bed vibration: 540mm
Internal grinding machine T-133	TOYO KOGYO CO., LTD.	2	Inter-center: 600mm · Bed vibration: 800mm
Surface grinding machine GK-800	AMADA CO., LTD.	1	Rotary 800
Surface grinding machine GHL-B306	Hitachi Seiko, Ltd.	1	600(W)×300(D)
Grinding machine	TOSHIBA MACHINE CO., LTD.	1	Inter-center: 4,000mm •Bed vibration: 525mm
Open sided planing machine	Marufuku Tekkosho Co., Ltd.	1	Table: 1,600×6,500 • Cutting height: 1,700 Maximum cutting width: 2,000 • Maximum movement distance: 8,50
Radial drilling machine	Ogawa Tekko Co., Ltd.	1	Boring capacity: 80 • Arm vertical movement: 900 • Spindle head horizontal movement: 1,620
Sawing machine	DAITO SEIKI CO.,LTD.	1	\$5,070 maximum cutting dimension: 500×750